Francesco Pugliese, PhD
f.pugliese@deeplearningitalia.com
http://www.deeplearningitalia.com
ARTIFICIAL NEURAL NETWORKS (ANNs)

ANNs were introduced, for the first time, by 1943, in a work on the formalization of neural activity in propositional logic form (McCulloch & Pitts, 1943). We can define **ANNs** as a simple model of biological organisms’ nervous system.

Neuron Activation
\[A_j = \sum_{i=1}^{N} w_{ij} x_i - \theta_i \]

Activation function
\[y_j = \Phi(A_j) = \Phi(\sum_{i=1}^{N} w_{ij} x_i - \theta_i) \]

In data mining: Methods have been developed to produce comprehensible models and reduce training times:

1) **Rule extraction:** extraction of symbolic models from pre-trained neural networks.

2) **Learn simple**, easy-to-understand neural networks.
In order to overcome the problems associated with the robotic system decomposition of traditional approaches (i.e. behavior-based robotics), evolutionary robotics can be used, where the robotic system is able to self-organize [Nolfi, S., Floreano, D., 2000].
Evolutionary Robotics

Generation

Mapping to phenotype

Behavior

Fitness Function

Genotypes: Artificial Chromosomes
(coding robot morphology, neural network architecture and weights, etc.)

New generation

Selection and reproduction
EXPERIMENTAL SETUP N.1

ROBOT’S CHASSIS

Top View

Bottom View

Infrared Sensors

Ground Sensors

Categorization Outputs

NEURAL NETWORK

I/O nodes

Infrared Sensors

Ground

motors

Categorization outputs

LEAKY Activation

\[A_j = t_j + \sum w_{ij} O_i , \quad O_j = \delta_j O^{t-1} + \left(1 - \delta_j\right) \left(1 + \frac{1}{e^{A_j}}\right), \quad 0 \leq \delta_j \leq 1 \]
EXPERIMENTAL SETUP N.1

RESULTS

FITNESS CURVE

- Individui migliori
- Media della popolazione
MAY Robotics help to understand social and psychological problems?

Developmental & Epigenetic Robotics

ICUB Project - IIT
Emergence of Leadership in Robots

- Behavioural and quantitative analysis indicate that a form of leadership emerges.
- Groups with a leader are more effective than groups without.
- The most skilled individuals in a group tend to be the leaders.
- Further analysis reveals the emergence of different “styles” of leadership (active and passive).

 - B - Weak Active Leadership.
 - C - Strong Active Leadership.
In recent years Deep Neural Networks have achieved noticeably breakthroughs in research (Bengio, 2009). This new methodology dealing with deep neural networks and their training algorithms is called “Deep Learning”. So far, in all the experiments, the resulting performances were many magnitudes better than other machine learning techniques available.
The advent of GPUs makes possible the training of very large neural networks with even more than 150 millions of parameters.

A new generation of larger training and test sets.

Better model regularization techniques have been discovered such as "Dropout" or "Data Augmentation"
Why Deep Learning over-performed traditional statistics models?

- “Deep Learning” approaches can be end-to-end trained without a task-specific feature engineering.
- These models are scalable: adding GPUs they can be trained faster.
- “Deep Learning is killing every problem in AI” (Elizabeth Gibney, 2016)
- Basically, statistics is not able to deal with very high dimensionalities of data as Deep Learning does.
Alpha Zero: Mastering the games of Go and Chess without Human Knowledge

- In Just 4 Hours, Google's AI Mastered All The Chess Knowledge in History
- "I always wondered how it would be if a superior species landed on Earth and showed us how they played chess. Now I know." grandmaster Peter Heine Nielsen.
- Google's AlphaZero Destroys Stockfish In 60 Game Matches

"This algorithm could run cities, continents, universes."

PETER DOCKRILL (Senior Writer)
Alpha Zero IS an Artificial Intelligence, it IS NOT just a Chess Engine.

12 Chess Openings Discovered by Alphazero
Computer Vision: Where does Traditional Statistics fail?

• **Computer Vision** is an interdisciplinary field that deals with the way algorithms can be made for gaining high-level understanding from digital images or videos.

• Statistical methods are not always welcome in computer vision.

• Statistical methods seem not scaling up to the challenges of computer vision problems (*Chellappa, R.*, 2012).
A new study proves the relationship between Vision capabilities and Intelligence (Tsukahara et al., 2016).

Computer Vision needs human-like abilities.
A new generation of machines might accomplish typical human tasks such as recognizing and moving objects, driving cars, cultivating fields, cleaning streets, city garbage collecting, etc.
Convolutional Neural Networks (CNN) are biologically-inspired variants of MLPs. We know the visual cortex contains a complex arrangement of cells (Hubel, D. and Wiesel, T., 1968). These cells are sensitive to small sub-regions of the visual field, called a receptive field. Other layers are: RELU layer, Pool Layer. Typical CNNs settings are: a) Number of Kernels (Filters), b) Receptive Field size, b) Padding, c) Stride. These parameters are tied by the following equation:

\[
(W - F + 2P)/(S + 1)
\]

Each neuron in the convolutional layer is connected only to a local region in the input volume spatially. In this case there are 5 neurons along the depth all looking at the same region.
Typical Settings of Convolutional Layers

a) **Number of Kernels (Filters)**

b) **Receptive Field size**

c) **0-Padding**

d) **Stride**

Other layers:

- **Pool Layer**
- **Activation Layer (RELU, TanH, Sigmoid)**
- **Fully Connected Layer**

These parameters are tied by the following equation:

\[
(W - F + 2P) / (S + 1)
\]
Convolutional Neural Networks (ConvNets or CNNs)

- **CNNs** were initially devised for **Image Recognition**, nowadays very often reach better-than-human accuracy.
- **CNNs** need to be fed with **images**, but since for a machine images are just **numeric matrices**...
- ...they are increasingly being used in **Natural Language Processing**, e.g. **text classification**, with excellent results.
Comparison of GitHub Contributors for Deep Learning Frameworks
Frameworks FOR DEEP LEARNING

<table>
<thead>
<tr>
<th>Framework</th>
<th>Languages</th>
<th>Tutorials and training materials</th>
<th>CNN modeling capability</th>
<th>RNN modeling capability</th>
<th>Architecture: easy-to-use and modular front end</th>
<th>Speed</th>
<th>Multiple GPU support</th>
<th>Keras compatible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theano</td>
<td>Python, C++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>Python</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Torch</td>
<td>Lua, Python (new)</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Caffe</td>
<td>C++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MXNet</td>
<td>R, Python, Julia, Scala</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Neon</td>
<td>Python</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CNTK</td>
<td>C++</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Keras is an higher-level interface for Theano (which works as backend). Keras displays a more intuitive set of abstractions that make it easy to configure neural networks regardless of the backend scientific computing library.

TensorFlow is an open-source software library for dataflow programming across a range of tasks. It is a symbolic math library, and also used for machine learning applications such as neural networks. It is used for both research and production at Google.

PyTorch is an open-source machine learning library for Python, derived from Torch, used for applications such as natural language processing. It is primarily developed by Facebook’s artificial-intelligence research group, and Uber’s "Pyro" software for probabilistic programming is built on it.
ImageNet: ImageNet is a dataset of over 15 million labeled high-resolution images belonging to roughly 22,000 categories.

- Since **2010** a competition called «ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)» uses a subset of ImageNet with roughly **1000** images in each of **1000** categories.

Train Set: 1.2 million

Validation Set: 50,000

Test set: 150,000
Computer Vision Datasets and Competitions

Kaggle: In 2010, Kaggle was founded as a platform for predictive **modeling and analytics competitions** on which companies and researchers post their data.

- Statisticians and data scientists from all over the world compete to produce the best models.
- **Data Science Bowl 2017** was the biggest competition focused on “Lung Cancer Detection”. The competition was founded by **Arnold Foundation** and awarded **$1 million** in prizes (**1st** ranked **$500,000**).

Train Set: around 150 CT labelled scans images per patient from 1200 patients encoded in **DICOM** format.

Stage 1 test set: 190 patients CT scans.

Stage 2 test: 500 patients CT scans.

Grand Challenges in Biomedical Image Analysis: This is a website hosting new competitions in the Biomedicine field. Specifically, **LUNA (LUng Nodule Analysis)** focuses on a large-scale evaluation of automatic nodule detection algorithms.

Train Set: LIDC/IDRI database consisting of 888 CT Scans labelled by 4 expert radiologists.
Computer Vision Datasets and Competitions

Cifar10 Dataset

The CIFAR-10 dataset

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 50000 images from each class.

Here are the classes in the dataset, as well as 10 random images from each:

classImages

The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.
MNIST DATABASE

MNIST database is handwritten digits composed of 60,000 pattern.

- 60,000 training set
- 10,000 test set

LeNet has been applied to this dataset with accuracy of 0.95%.
LeNet was one of the very first convolutional neural networks which helped to propel the field of Deep Learning. This pioneering work by Yann LeCun was named LeNet5 after many previous successful iterations since the year 1988.
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dense

class LeNet:
 @staticmethod
 def build(width, height, depth, classes, summary, weightsPath=None):
 # initialize the model
 model = Sequential()
 # first set of CONV => RELU => POOL
 model.add(Convolution2D(20, 5, 5, border_mode="same", input_shape=(depth, height, width)))
 model.add(Activation("relu"))
 model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
LeNet in Keras

```python
# second set of CONV => RELU => POOL
model.add(Convolution2D(50, 5, 5, border_mode="same"))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# set of FC => RELU Layers
model.add(Flatten())
model.add(Dense(500))
model.add(Activation("relu"))

# softmax classifier
model.add(Dense(classes))
model.add(Activation("softmax"))

if summary==True:
    model.summary()

# if a weights path is supplied (indicating that the model was pre-trained), then load the weights
if weightsPath is not None:
    model.load_weights(weightsPath)

return model
```
AlexNet

Critical Features (Krizhevsky, A. et al, 2012)

- 8 trainable layers: 5 convolutional layers and 3 fully connected layers.
- Max pooling layers after 1st, 2nd and 5th layer.
- Rectified Linear Units (ReLUs) (Nair, V., & Hinton, G. E. 2010).
- Local Response Normalization.
- 60 millions parameters, 650 thousands neurons.
- Regularizations: Dropout (prob 0.5 in the first 2 fc layers, Data Augmentation (translations, horizontal reflections, PCA on RGB).
- Trained on 2 GTX 580 3 GB GPUs.

Results:
- 1 CNNs: 40.7% Top-1 Error, 18.2% Top-5 Error
- 5 CNNs: 38.1% Top-1 Error, 16.4% Top-5 Error
- SIFT+FVs: 26.2% Top-5 Error (Sánchez, J., et al., 2013).
def get_alexnet(input_shape, nb_classes, mean_flag):
 # code adapted from https://github.com/heuritech/convnets-keras

 inputs = Input(shape=input_shape)

 if mean_flag:
 mean_subtraction = Lambda(mean_subtract, name='mean_subtraction')(inputs)
 conv_1 = Convolution2D(96, 11, 11, subsample=(4, 4), activation='relu',
 name='conv_1', init='he_normal')(mean_subtraction)
 else:
 conv_1 = Convolution2D(96, 11, 11, subsample=(4, 4), activation='relu',
 name='conv_1', init='he_normal')(inputs)

 conv_2 = MaxPooling2D((3, 3), strides=(2, 2))(conv_1)
 conv_2 = crosschannelnormalization(name="convpool_1")(conv_2)
 conv_2 = ZeroPadding2D((2, 2))(conv_2)
 conv_2 = merge([Convolution2D(128, 5, 5, activation="relu", init='he_normal', name='conv_2_' + str(i+1))(conv_2)
 for i in range(2)], mode='concat', concat_axis=1, name="conv_2")

 conv_3 = MaxPooling2D((3, 3), strides=(2, 2))(conv_2)
 conv_3 = crosschannelnormalization()(conv_3)
 conv_3 = ZeroPadding2D((1, 1))(conv_3)
 conv_3 = Convolution2D(384, 3, 3, activation='relu', name='conv_3', init='he_normal')(conv_3)
conv_4 = ZeroPadding2D((1,1))(conv_3)
conv_4 = merge(
 [Convolution2D(192,3,3,activation="relu", init='he_normal', name='conv_4_'+str(i+1))(splittensor(ratio_split=2,id_split=i)(conv_4)
 for i in range(2)], mode='concat',concat_axis=1,name="conv_4")

conv_5 = ZeroPadding2D((1,1))(conv_4)
conv_5 = merge(
 [Convolution2D(128,3,3,activation="relu", init='he_normal', name='conv_5_'+str(i+1))(splittensor(ratio_split=2,id_split=i)(conv_5)
 for i in range(2)], mode='concat',concat_axis=1,name="conv_5")

dense_1 = MaxPooling2D((3,3), strides=(2,2),name="convpool_5")(conv_5)

dense_1 = Flatten(name="flatten")(dense_1)
dense_1 = Dense(4096, activation='relu',name='dense_1',init='he_normal')(dense_1)
dense_2 = Dropout(0.5)(dense_1)
dense_2 = Dense(4096, activation='relu',name='dense_2',init='he_normal')(dense_2)
dense_3 = Dropout(0.5)(dense_2)
dense_3 = Dense(nb_classes,name='dense_3_new',init='he_normal')(dense_3)
prediction = Activation("softmax",name="softmax")(dense_3)
alexnet = Model(input=inputs, output=prediction)
return alexnet
Critical Features (Simonyan, K., & Zisserman, A., 2014):

• **Kernels with small receptive fields**: 3x3 which is the smallest size to capture the notion of left/right up/down, center. It is easy to see that a stack of two 3x3 conv. layers (without spatial pooling in between) has an effective receptive field of 5x5, and so on.

• Small size **Receptive Field** is a way to increase the nonlinearity of the decision function fields of the conv. layers.

• **Increasing depth architectures**: VGG-16 (2xConv3-64, 2xConv3-128, 3xConv3-256, 6xConv3-512, 3xFC), VGG-19 (same as VGG-16 but with 8xConv3-512).

• **Upside**: less complex topology, outperforms GoogleNet on single-network classification accuracy

• **Downside**: 138 millions parameters for VGG-16!

Results:

• **Multi ConvNet model**:
 - (D/[256;512]/256,384,512),
 - (E/[256;512]/256,384,512), multi-crop & dense eval: **23.7%** Top-1 Error, **6.8%** Top-5 Error.
Critical Features (Szegedy, C., et al., 2015):

- **Computationally Effective Deep architecture**: 22 layers
- **Why the name inception, you ask?** Because the module represents a *network within a network*. If you don't get the reference, go watch Christopher Nolan's "INCEPTION", computer scientists are hilarious.
- **Inception**: It is basically the parallel combination of 1×1, 3×3, and 5×5 convolutional filters.
- **Bottleneck layer**: The great insight of the inception module is the use of 1×1 convolutional blocks (NiN) to reduce the number of features before the expensive parallel blocks.
- **Upside**: 4 millions parameters!
- **Downside**: Not scalable!

Results:

- **7 Models Ensemble**: 6.67% Top-5 Error.
Critical Features (He, K., et al., 2016):

- **Degradation Problem:** Stacking more and more layers **IS NOT** better. With the network depth increasing, accuracy gets saturated and then degrades rapidly! It’s an issue of “solvers”.

- **Solves the “Degradation problem”:** by fitting a residual mapping which is easier to optimize.

- **Shortcut connections**

- **Very deep architecture:** up to 1202 layers with WideResnet with only **19.4 million** parameters!

- **Upside:** Increasing accuracy with more depth

- **Downside:** They don’t consider other architectures breakthroughs.

Results:
- ResNet: **3.57%** Top-5 Error.

CNNs show superhuman abilities at Image Recognition! **5%** Human estimated Top-5 error. (Johnson, R. C., 2015)
Problems:

- **Feature extraction**: In biomedicine feature extraction is not as easy as in an Imagenet competition with general images. A previous **Image Preprocessing** is needed. This is called **Segmentation**.

- On Kaggle website there are whole competitions just regarding Segmentation. One of these was called «**Ultrasound Nerve Segmentation**».
Critical Features (*Ronneberger, O., et al., 2015*):

- **U-NET** can be trained end-to-end from very few images and outperforms the prior best methods.
- It consists of a contracting path (left side) to capture context and an symmetric expansive path (right side) enabling precise localization.
- Upsampling part (repeating rows and cols) has a large number of feature channels which allow the network to propagate context information to higher resolution layers.
- **Spatial Dropout**: feature maps dropout.
- **Upside**: Small training set.
- **Downside**: Risk of overfitting.
Neural Network Architectures
From each web-site: Bag-Of-Words

<table>
<thead>
<tr>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the beginning God created the heaven and the earth. And the earth was without form and void; and darkness was upon the face of the deep. And the Spirit of God moved upon the face of the waters. And God said, Let there be light: and there was light.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

From all web-sites’ bag-of-words: TDM

From each TDM row: 32x32 squared image encoding
Web-Site classification by Images Approach

• According to the **False Positive Reduction** technique we exploit the inner images segmentation of a Web-site in order to train an evolved ConvNet (ResNet) model onto the single websites images segments.

• **ConvNet** is trained in **“Transfer Learning”** mode, which means taking advantage of a pre-trained model onto well-know datasets such as Imagenet (1000 image classes, 1.2 mln images).
Web-Site classification by Images Approach

Positive Set (E-commerce)

Negative Set (Non E-commerce)

Residual Neural Network

1 - E-commerce
0 – Non E-commerce

- In test stage, on a **Test Set**, Web-site images are still segmented and the label of the image with higher probability is assigned to the web-site itself.
Automatic Extraction of Statistics from Satellite Imagery: Land Use and Land Cover Classification

Nowadays, more and more public and up-to-dated satellite image data for Earth observation are available.

However, to fully utilize this data, to automatically extract statistics, satellite images must be processed and transformed into structured semantics.
Lung Cancer Detection

Training Set (DICOM)

Preprocessing

DICOM to PNG Conversion

Denoising Filters

SEGMENTATION (U-NET)

Nodules Distance Merging & Z Merging (Connected Graphs by Nodules Centre of Mass)

(x,y) coordinates

.png Images

Classification Model

FALSE POSITIVE REDUCTION

3 Wide Res Net XY, XZ, YZ planes Models

Nodules Images

Cancer

Non-Cancer

.png Images

Preprocessing Classification Model
Segmentation

- Segmentation algorithm yields the coordinates (X,Y) of the nodules centers which enable the distance merging algorithm to extract nodules from directly from input CT-Scans.
Distance Merging and Z-Merging

Distance Merging

Z-Merging
Lung Cancer Classification

Candidate Nodule Selection via UNET

Dilation, Erosion, Nodules Distance Merging

False Positive Reduction via WideResNet

Cancer / Non cancer
The application of Deep Learning approaches to time-series prediction has received a great deal of attention from both entrepreneurs and researchers. Results show that deep learning models outperform other statistical models in predictive accuracy (Bao, et al., 2017).

The application of classic time series models, such as Auto Regressive Integrated Moving Average (ARIMA), usually requires strict assumptions regarding the distributions and stationarity of time series. For complex, non-stationary and noisy time-series it is necessary for one to know the properties of the time series before the application of classic time series models (Bodyanskiy and Popov, 2006). Otherwise, the forecasting effort would be ineffective.
Advantages of Artificial Neural Networks (ANNs) in Time-Series Prediction

• However, by using ANNs, a priori analysis as ANNs do not require prior knowledge of the time series structure because of their black-box properties (Nourani, et al., 2009).

• Also, the impact of the stationarity of time series on the prediction power of ANNs is quite small. It is feasible to relax the stationarity condition to non-stationary time series when applying ANNs to predictions (Kim, et al., 2004).

• ANNs allow multivariate time-series forecasting whereas classical linear methods can be difficult to adapt to multivariate or multiple input forecasting problems.
Stacked Auto-encoders (SAEs)

• According to recent studies, better approximation to nonlinear functions can be generated by stacked deep learning models than those models with a more shallow structure.

• A Single layer Auto-Encoder (AE) is a three-layer neural network. The first layer and the third layer are the input layer and the reconstruction layer with k units, respectively. The second layer is the hidden layer with n units, which is designed to generate the deep feature for this single layer AE.

• The aim of training the single layer AEE is to minimize the error between the input vector and the reconstruction vector by gradient descent.

\[
a(x) = f(W_1x + b_1) \\
x' = f(W_2a(x) + b_2)
\]
Stacked Auto-encoders (SAEs)

- Stacked auto-encoders (SAEs) are constructed by stacking a sequence of single-layer AEs layer by layer (Bengio Y, et. Al. 2007).
- After training the first single-layer auto-encoder, the reconstruction layer of the first single layer auto-encoder is removed (included weights and biases), and the hidden layer is reserved as the input layer of the second single-layer auto-encoder.
- **Depth** plays an important role in SAE because it determines qualities like invariance and abstraction of the extracted feature.
- **Wavelet Transform (WT)** can be applied as input to SAEs to handle data particularly non-stationary (Ramsey, 1999).
Recurrent Neural Networks (RNNs): Elman’s Architecture

- There exist several indicators to measure the predictive accuracy of each model (Hsieh, et. al., 2011; Theil, 1973)

- **RMSE (Root Mean Square Error):** Represents the sample standard deviation of the differences between predicted values and observed values.

- **MAPE (Mean Absolute Percentage Error):** Measures the size of the error in percentage terms. Most people are comfortable thinking in percentage terms, making the MAPE easy to interpret.

- Thanks to its recursive formulation, RNNs are not limited by the Markov assumption for sequence modeling:

\[
p\{ x(t) | x(t-1), ..., x(1) \} = p\{ x(t) | x(t-1) \}
\]

```
Simple Feed Forward Artificial Neural Network (MLP)

O-----O-----O
x(t)  h(t)  y(t)
```

```
Recurrent Neural Network (Elman’s Architecture)

O-----O-----O
\ /  \ Wh
\ / \\
0-----0-----0
Wi  Wo
```

\[
h(t) = f(x(t)W_i + h(t-1)W_h + b_h)
\]
Unfolding RNNs

- Although RNN models the time series well, it is hard to learn long-term dependencies because of the vanishing gradient problem in Back-Propagation Through Time (BPTT) (Palangi H, et al., 2016)
In BPTT updating weights is going to look exactly the same.

We can prove that the derivative of the loss function “Cross-Entropy” passes through the derivative of and the Softmax.

\[p_j = \frac{e_j}{\sum_{k=1}^{N} e_k} \]

Things are going to be multiplied together over and over again, due to the chain rule of calculus:

\[\frac{d[W_h^T h(t-1)]}{dW_h} \]

The result is that gradients go down through the time (vanishing gradient problem) or they get very large very quickly (exploding gradient problem)

RRNNs, GRUs, LSTMs solve the gradient problems with BPTT

\[y(t) = \text{softmax}(W_o^T h(t)) \]

\[y(t) = \text{softmax}(W_o^T f(W_h^T h(t-1) + W_x^T x(t))) \]

\[y(t) = \text{softmax}(W_o^T f(W_h^T f(W_h^T h(t-2) + W_x^T x(t-1))) + W_x^T x(t))) \]

\[y(t) = \text{softmax}(W_o^T f(W_h^T f(W_h^T f(W_h^T h(t-3) + W_x^T x(t-2)) + W_x^T x(t-1)) + W_x^T x(t))) \]

We drop the bias in order to display things simply.
Rated Recurrent Neural Networks (RRNNs)

- The idea is to weight \(f(x, h(t-1)) \), which is the output of a simple RNN and \(h(t-1) \) which is the previous state \((\text{Amari, et al., 1995})\).

- We add a rating operation between what would have been the output of a simple RNN and the previous output value.

- This new operation can be seen as a gate since it takes a value between 0 an 1, and the other gate has to take 1 minus that value.

- This is a gate that is choosing between 2 things: a) taking on the old value or taking the new value. As result we get a mixture of both.

\[
\begin{align*}
\hat{h}(t) &= f(x(t)W_x + h(t-1)W_h + b_h) \\
z(t) &= \text{sigmoid}(x(t)W_{xz} + h(t-1)W_{hz} + b_z) \\
h(t) &= (1 - z(t)) \ast h(t-1) + z(t) \ast \hat{h}(t) \\
\end{align*}
\]

- \(Z(t) \) is called the “rate”
Gated Recurrent Neural Networks (GRUs)

- Gated Reccurrent Units were introduced in 2014 and are a simpler version of LSTM. They have less parameters but same concepts (Chung, et al., 2014).

- Recent research has also show that the accuracy between LSTM and GRU is comparable and even better with the GRUs in some cases.

- In GRUs we add one more gate with regard to RRNNs: the “reset gate r(t)” controlling how much of the previous hidden we will consider when we create a new candidate hidden value. In other words, it can “reset” the hidden value.

- The old gate of RRNNs is now called “update gate z(t)” balancing previous hidden values and new candidate hidden value for the new hidden value.
Long-Short Term Memories (LSTMs)

- LSTM is an effective solution for combating vanishing gradients by using memory cells (Hochreiter, et al., 1997).
- A memory cell is composed of four units: an input gate, an output gate, a forget gate and a self-recurrent neuron.
- The gates control the interactions between neighboring memory cells and the memory cell itself. Whether the input signal can alter the state of the memory cell is controlled by the input gate. On the other hand, the output gate can control the state of the memory cell on whether it can alter the state of other memory cell. In addition, the forget gate can choose to remember or forget its previous state.
Deep LSTM/GRU Architectures

Image Caption Generator

Seq2seq model
Metrics

• There exist several indicators to measure the predictive accuracy of each model (Hsieh, et. al., 2011; Theil, 1973)

• **RMSE (Root Mean Square Error):** Represents the sample standard deviation of the differences between predicted values and observed values.

• **MAPE (Mean Absolute Percentage Error):** Measures the size of the error in percentage terms. Most people are comfortable thinking in percentage terms, making the MAPE easy to interpret.

• **Theil U:** Theil U is a relative measure of the difference between two variables. It squares the deviations to give more weight to large errors and to exaggerate errors.

\[
RMSE = \sqrt{\frac{\sum_{t=1}^{T} (\hat{y}_t - y_t)^2}{n}}
\]

\[
MAPE = \frac{\sum_{t=1}^{N} |\frac{y_t - y'_t}{y_t}|}{N}
\]

\[
Theil U = \sqrt{\frac{\frac{1}{N} \sum_{t=1}^{N} (y_t - y'_t)^2}{\frac{1}{N} \sum_{t=1}^{N} (y_t)^2 + \frac{1}{N} \sum_{t=1}^{N} (y'_t)^2}}
\]

In these equations, \(y_t\) is the actual value and \(\hat{y}_t\) is the predicted value.
Results: Bitcoin BTC-ETH exchange Time Series Prediction – 5 mins (Poloniex)

Test Set: 10%

1 Epoch

10 Epochs

100 Epochs
Results: Bitcoin BTC-ETH exchange Time Series Prediction – 4 hours (Poloniex)

Test Set: 10%

1 Epoch

10 Epochs

100 Epochs
Textual Big Data alias The problem of the Natural Language Processing - NLP

- Understanding **complex language utterances is one of the hardest challenge** for Artificial Intelligence (AI) and Machine Learning (ML).
- **NLP** is everywhere because people communicate most everything: web search, advertisement, emails, customer service, etc.
Deep Learning and NLP

• “Deep Learning” approaches have obtained very high performance across many different NLP tasks. These models can often be trained with a single end-to-end model and do not require traditional, task-specific feature engineering.

 (Stanford University School Of Engineering – CS224D)

• Natural language processing is shifting from statistical methods to Neural Networks.
7 NLP applications where Deep Learning achieved «state-of-art» performance

1. **Text Classification**: Classifying the topic or theme of a document (i.e. **Sentiment Analysis**).
2. **Language Modeling**: Predict the next word given the previous words. It is fundamental for other tasks.
3. **Speech Recognition**: Mapping an **acoustic signal** containing a spoken natural language utterance into the corresponding sequence of words intended by the speaker.
4. **Caption Generation**: Given a **digital image**, such as a photo, generate a **textual description** of the contents of the image.
7 NLP applications where Deep Learning achieved «state-of-art» performance

• **5 Machine Translation**: Automatic translation of text or speech from one language to another, is one [of] the most important applications of NLP.

• **6 Document Summarization**: It is the task where a short description of a text document is created.

• **7 Question Answering**: It is the task where the system tries to answer a user query that is formulated in the form of a question by returning the appropriate noun phrase such as a location, a person, or a date. (i.e. Who killed President Kennedy? Oswald)
Text Classification Models

- **RNN, LSTM, GRU, ConvLstm, RecursiveNN, RNTN, RCNN**
- The modus operandi for text classification involves the use of a pre-trained word embedding for representing words and a deep neural networks for learning how to discriminate documents on classification problems.

 - The non-linearity of the NN leads to superior classification accuracy.
Word Embedding & Language Modeling

- Word embedding is the collective name for a set of language modeling and feature learning techniques for natural language processing (NLP) where words or sentences from the vocabulary are mapped to vectors of real numbers.

- These vectors are semantically correlated by metrics like cosine distance.
• **Sentiments** of users that are expressed on the web has great influence on the readers, product vendors and politicians.

• **Sentiment Analysis** refers to text organization for the classification of mind-set or feelings in different manners such as negative, positive, favorable, unfavorable, thumbs up, thumbs down, etc. Thanks to DL, the SA can be visual as well.

Discovering people opinions, emotions and feelings about a product or service
Sentiment Analysis with Feedback

- Stockle start page
- Apple Inc.: AAPL 116.30 (+0.25%)
- ADBE: ADBE 0.0 (0.0%)
- eBay Inc.: EBAY 31.46 (-0.49%)
- GOOGL: GOOGL 0.0 (0.0%)
- Microsoft Corporation: MSFT 57.19 (-0.85%)
- Yahoo! Inc.: YHOO 42.68 (-1.24%)
Recursive Neural Tensor Networks (RecursiveNN) (Socher, R., et al., 2011b)

- This models are recursive auto-encoders which learn semantic vector representations of phrases. Word indices (orange) are first mapped into a semantic vector space (blue).
- Then they are recursively merged by the same auto-encoder network into a fixed length sentence representation. The vectors at each node are used as features to predict a distribution over text labels.
Recursive Neural Tensor Networks (RNTN) (Socher, R., et al. 2013)

- The Stanford Sentiment Treebank is the first corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language.

- RNTNs compute parent vectors in a bottom up fashion using a compositionality function and use node vectors as features for a classifier at that node.
RNTN – Upside and Downside

- RNTNS are very efficient in terms of constructing sentence representations.
- RNTNs capture the semantics of a sentence via a tree structure. Its performance heavily depends on the performance of the textual tree construction.
- Constructing such a textual tree exhibits a time complexity of at least $O(n^2)$, where n is the length of the text.
- RNTNs are unsuitable for modeling long sentences or documents.
Recurrent Convolutional Neural Networks (RCNN) (Lai, S., et al. 2015)

- They adopt a recurrent structure to capture contextual information as far as possible when learning word representations, which may introduce considerably less noise compared to traditional window-based neural networks.
- The bi-directional recurrent structure of RCNNs.
- RCNNs exhibit a time complexity of $O(n)$.
RCNN Equations

• RCNNs exhibit a **time complexity of $O(n)$**, which is linearly correlated with the length of the text length.

\[
\begin{align*}
c_l(w_i) &= f(W^{(l)}c_l(w_{i-1}) + W^{(sl)}e(w_{i-1})) \\
c_r(w_i) &= f(W^{(r)}c_r(w_{i+1}) + W^{(sr)}e(w_{i+1}))
\end{align*}
\]

• **7 equations** defining all the Neural Network topology

• **Input length** can be variable

\[
\begin{align*}
x_i &= [c_l(w_i); e(w_i); c_r(w_i)] \\
y_i^{(2)} &= \tanh \left(W^{(2)}x_i + b^{(2)} \right) \\
y^{(3)} &= \max_{i=1}^{n} y_i^{(2)} \\
y^{(4)} &= W^{(4)}y^{(3)} + b^{(4)} \\
p_i &= \frac{\exp \left(y_i^{(4)} \right)}{\sum_{k=1}^{n} \exp \left(y_k^{(4)} \right)}
\end{align*}
\]
class SentimentModelRecConvNet:
 @staticmethod

 def build(input_length, vector_dim):
 hidden_dim_RNN = 200
 hidden_dim_Dense = 100

 embedding = Input(shape=(input_length, vector_dim))

 left_context = LSTM(hidden_dim_RNN, return_sequences = True)(embedding) # Equation 1
 right_context = LSTM(hidden_dim_RNN, return_sequences = True, go_backwards = True)(embedding) # Equation 2
 together = concatenate([left_context, embedding, right_context], axis = 2) # Equation 3
 semantic = TimeDistributed(Dense(hidden_dim_Dense, activation = "tanh"))(together) # Equation 4
 pool_rnn = Lambda(lambda x: backend.max(x, axis = 1), output_shape = (hidden_dim_Dense,))(semantic) # Equation 5
 pool_rnn_args = Lambda(lambda x: backend.argmax(x, axis=1), output_shape = (hidden_dim_Dense,))(semantic)

 output = Dense(1, input_dim = hidden_dim_Dense, activation = "sigmoid")(pool_rnn) # Equations 6, 7

 deepnetwork = Model(inputs=embedding, outputs=output)
 deepnetwork_keywords = Model(inputs=embedding, outputs=pool_rnn_args)

 return [deepnetwork, deepnetwork_keywords]
RCNN: Feature Extraction

- RCNNs employ a max-pooling layer that automatically judges which words play key roles in text classification to capture the key components in texts.

- The most important words are the information most frequently selected in the max-pooling layer.

- Contrary to the most positive and most negative phrases in RNTN, RCNN does not rely on a syntactic parser, therefore, the presented n-grams are not typically “phrases”.

<table>
<thead>
<tr>
<th>RCNN</th>
<th>RNTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>well worth the; a wonderful movie; even stinging at; and invigorating film; and ingenious entertainment; and enjoy.; ’s sweetest movie</td>
<td>an amazing performance; most visually stunning; wonderful all-ages triumph; a wonderful movie for worst movie; A lousy movie; a complete failure; most painfully marginal; very bad sign</td>
</tr>
<tr>
<td>A dreadful live-action; Extremely boring.; is n’t a; ’s painful.; Extremely dumb.; an awfully derivative; ’s weaker than; incredibly dull.; very bad sign</td>
<td></td>
</tr>
</tbody>
</table>
RCNN applied to Extractive Text Summarization

- **Best keywords** lead to **best contexts** --> **Summarization**

Tweet 29: "Già avete letto 136 pagine del piano scuola? #Fenomeni #labuonascuola"

Sentiment: -0.95 -1
Keywords: pagine, avete, fenomeni, piano

Tweet 30: "Per l’aertnanza #scuola #lavoro bisogna passare da 11a 100milioni di euro" #labuonascuola http://t.co/zG4zkniBrv"

Sentiment: -0.81 -1
Keywords: euro, t, scuola, lavoro

Most significant keywords driving the sentiment decision:

Ecco
Siamo
Scuola
Giuste
Escluso

Most significant sentences driving the sentiment decision:

...cambierà solo se noi metteremo al centro...
...solo se noi metteremo al centro la...
...più grande spettacolo mai visto passadopopasso scuola...
...mai visto passadopopasso scuola labuonascuola...
...nessuno si senta escluso la buona scuola...
Recurrent Neural Networks are able to understand negations and other things

- Thanks to **word embeddings** semantics **RNNs** can recognize **negations**, and complex **forms** of **language utterances**.

<table>
<thead>
<tr>
<th>Tweet: This is a bad thing</th>
<th>Sentiment: -0.72 -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords: bad, thing, a, is</td>
<td></td>
</tr>
<tr>
<td>Tweet: This is not a bad thing</td>
<td>Sentiment: 0.46 +1</td>
</tr>
<tr>
<td>Keywords: not, thing, bad, a</td>
<td></td>
</tr>
<tr>
<td>Tweet: This is a positive thing</td>
<td>Sentiment: 0.94 +1</td>
</tr>
<tr>
<td>Keywords: positive, thing, a, is</td>
<td></td>
</tr>
<tr>
<td>Tweet: This is a very positive thing</td>
<td>Sentiment: 0.91 +1</td>
</tr>
<tr>
<td>Keywords: positive, very, thing, a</td>
<td></td>
</tr>
<tr>
<td>Tweet: I like Renzi politics</td>
<td>Sentiment: 0.70 +1</td>
</tr>
<tr>
<td>Keywords: like, renzi, politics, i</td>
<td></td>
</tr>
<tr>
<td>Tweet: I don’t agree with Renzi Politics</td>
<td>Sentiment: 0.16 0</td>
</tr>
<tr>
<td>Keywords: don’t, agree, politics, renzi</td>
<td></td>
</tr>
<tr>
<td>Tweet: Renzi did a wrong international Politics</td>
<td>Sentiment: -0.34 -1</td>
</tr>
<tr>
<td>Keywords: wrong, did, renzi, international</td>
<td></td>
</tr>
<tr>
<td>Tweet: Renzi did a very good international Politics</td>
<td>Sentiment: 0.74 +1</td>
</tr>
<tr>
<td>Keywords: did, renzi, good, very</td>
<td></td>
</tr>
<tr>
<td>Tweet: Istat is a very good Institute of research</td>
<td>Sentiment: 0.84 +1</td>
</tr>
<tr>
<td>Keywords: good, very, research, istat</td>
<td></td>
</tr>
<tr>
<td>Tweet: Istat is not a good Institute of research</td>
<td>Sentiment: -0.78 -1</td>
</tr>
<tr>
<td>Keywords: not, research, istat, institute</td>
<td></td>
</tr>
</tbody>
</table>
Multilingual Sentiment Analysis

• During the training stage, the RCNN achieves 84% of accuracy on a validation set (selected at the 20% of the original dataset). On a test set of 380 tweets (provided by Semeval), the model returns around 82% of accuracy on positive tweets and 78% of accuracy on negatives, with an approximative 80% overall on a mixed tweets set.

• During the training we determined 3.2 millions of keywords, namely 2 for each tweet, the most important and the second in order of signinificancy.
Contextual Translations Web-sites
Neural Machine Translation

<table>
<thead>
<tr>
<th>Input sentence:</th>
<th>Translation (PBMT):</th>
<th>Translation (GNMT):</th>
<th>Translation (human):</th>
</tr>
</thead>
<tbody>
<tr>
<td>李克强此行将启动中加总理年度对话机制，与加拿大总理杜鲁多举行两国总理首次年度对话。</td>
<td>Li Keqiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.</td>
<td>Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.</td>
<td>Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.</td>
</tr>
</tbody>
</table>

Diagram:

```
Encoder -[→]- [S]
Embed -[→]-
```

```
He loved to eat.
```

Diagram:

```
[S]
Encoder -[→]- Decoder

He loved to eat.
```
Neural Machine Translation

- Neural machine translation (NMT) is an approach to “machine translation” that uses large ANN to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model (Bahdanau et al., 2014; Luong et Manning, 2016).
We have tested the English RCNN model on the same Italian SENTIPOLC 2016 test-set translated into English by our neural machine translation model. Results highlight a boost of performance: 78% of accuracy on the test set versus the 43% of the Italian trained RCNN model proving our strategy of stacking NMT and RCNN models is successful.
The Deep Learning Italia Project

- A competence-sharing web-site designed exclusively for Deep Learning
- An e-learning platform for the disclosure of Deep Learning
- A collector of professionals around Deep Learning topics
- In the next future it will become a complete development suite for Deep Learning
Tutorials

MACHINE LEARNING

ITALIANO, MACHINE LEARNING IT, MATH IT
METODI LINEARI PER LA RIDUZIONE DELLA DIMENSIONALITÀ: ANALISI DELLE COMPONENTI PRINCIPALI

MACHINE LEARNING IT
METODI PER LA RIDUZIONE DELLA DIMENSIONALITÀ BASATI SULLA VARIETÀ DIFFERENZIABILE: IL CASO ISOMAP

MACHINE LEARNING IT
STOCHASTIC NEIGHBOR EMBEDDING (SNE) E LA SUA CORREZIONE IN t-SNE

Cosa Posso Trovare
Il ML è un insieme di tecniche che permettono alla macchina di “imparare” dai dati e in seguito prendere decisioni o fare una predizione su di essi.
Community

DEEP LEARNING – IT

Deep Bulletin: Lending It Over Theresa May
Deep Bulletin: Lending It Over Theresa May. Bloomberg May face embarrassing direct defeat in upper house. Theresa is the Lord’s hands. The title in full coverage

Tributes pour in for ‘force of a woman’ Barbara Bush

Family, Grief and Life to Politician Here Are Some of Barbara Bush’s Most Memorable Quotes CNN/Pink Lady Barbara Bush Dies at Age 92. GoodMorningCompass.com has a lesson learned in Barbara Bush’s passing. Washington Post Full coverage

Chinese President Xi Jinping will visit Pyongyang ‘soon,’ official says
Chinese President Xi Jinping will visit Pyongyang ‘soon,’ official says CNN

Director Pompeo reportedly made secret trip to North Korea: NPR/Japan Fiscal Year Trade Surplus With US up Nearly 6 Percent. U.S. News & World Report

Bolton dealing to build an Arab military force in Syria
Bolton dealing to build an Arab military force in Syria. CONSCIOL- Arabica brings back muscle builders and muscle builders. CNN/Arabia is lifting its cinema ban. Quartz/What Saudi Arabia can learn from ‘Black Panther’ Washington Post Full coverage

Fifteen Massachusetts police officer to be laid to rest
Fifteen Massachusetts police officer to be laid to rest. Fox News Thousands gather on Cape Cod for wake of slain police officer. The Boston Globe

Thousands line streets to honor slain Nantucket officer Joan Barnett. Boston News, Weather, Sports | WHDH

Castro’s successor seen as unlikely to bring sweeping change to Cuba
Castro’s successor seen as unlikely to bring sweeping change to Cuba. Reuters look at the younger generation of Cuban leaders. Washington Post Real Castro To Step Down. As Cuba’s President? Huffington Post Shouldn’t Ignore Cuba. New York Times Full coverage
Meetup & Conferences

MEETUPS
Rimani sempre aggiornato sulle iniziative di Deep Learning Italia e registrati ai nostri meetup che si svolgono una volta al mese a Roma, Milano e Pisa

I Nostri Meetups

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Location</th>
<th>Date Begin</th>
<th>Date End</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 MARZO 2018</td>
<td>Introduzione divulgativa alle Reti Neurali e al Deep Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 MARZO 2018</td>
<td>Deep Learning & Alpha Go - Maurizio Parton</td>
<td>Las Vegas, USA</td>
<td>18 marzo 2018</td>
<td>21 marzo 2018</td>
<td>ShopTalk covers the rapid evolution of how consumers discover, shop and buy—from new technologies and business models to the latest trends in consumer behaviors, preferences and expectations.</td>
</tr>
<tr>
<td>29 MARZO 2018</td>
<td>Capsule Networks - Daniele D’Armiello</td>
<td></td>
<td></td>
<td></td>
<td>To survive and thrive in the digital era, now is the time to drive data and analytics into the core of your business and scale outward to every employee, customer, supplier and partner. This conference will help you create the future—a future based on data you can trust, analytics you can rely on and the insight needed to make game-changing business decisions.</td>
</tr>
<tr>
<td>29 MARZO 2018</td>
<td>Analysis of Deep Learning Models by Deep Echo State Networks - Luca Pedrelli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 MARZO 2018</td>
<td>Deep Learning and the "Deep Learning Italia Project" - Francesco Pugliese</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Goodfathers

GODFATHERS OF DEEP LEARNING

Andrew Ng

Andrew Ng is VP & Chief Scientist of Baidu, Co-Chairman and Co-Founder of Coursera, and an Adjunct Professor at Stanford University.

In 2011 he led the development of Stanford University's main MOOC (Massive Open Online Courses) platform and also taught an online Machine Learning class to over 100,000 students, leading to the founding of Coursera. Ng's goal is to give a... LEARN MORE HERE
REFERENCES

Computer Vision

Wide-Residual-Nets
16 marzo 2018

Visualizing and Understanding Convolutional Networks
16 marzo 2018

Very-Deep-Convolutional-Networks-For-Large-Scale-Image-Recognition
16 marzo 2018

Semi-supervised-Convolutional-Neural-Networks-for-Text-Categorization-via-
Workshop

WORKSHOP

DEEP LEARNING MODEL HANDS-ON (2 DAYS)
In questo corso si vedranno nel dettaglio tecniche di codice e di lavoro modelli di Deep Learning con applicazioni pratiche su casi reali.

FROM O TO EXPERT IN DEEP LEARNING (3 DAYS)
In questo corso si affrontano teoricamente e praticamente tutti i concetti che hanno portato al grande successo del Deep Learning.

COME CAPIRE LE ESIGENZE DEL CLIENTE E VEDERE UNA SOLUZIONE AI (1 DAY)
In questo corso si dovrà capire come interpretare le esigenze del cliente che si affaccia per la prima volta al mondo dell'Intelligenza Artificiale (AI). Questo ci aiuterà a sapere come vedere una soluzione AI.

COME CREARE E GESTIRE UN GRUPPO DI DATA SCIENTISTS (1 DAY)
In questo corso si vedrà un'importante risposta alla domanda: come preparare i dati e come organizzare il lavoro di un gruppo di Data Scientists. Si affronteranno casi di successo di quale casa dell'Intelligenza Artificiale (AI) si è avvicinata ai problemi aziendali e che hanno dimostrato di utilizzare l'AI per migliorare il proprio business.

INTELLIGENZA ARTIFICIALE PER LE STRATEGIE AZIENDALI (1/2 DAY)
In questo corso si affronterà il tema di come l'AI può migliorare le strategie aziendali e migliorare diversi processi e il decision making in ambito managieriale.

COME CAPIRE SE LA TUA AZIENDA E’ PRONTA PER UNA SOLUZIONE DI INTELLIGENZA ARTIFICIALE (1/2 DAY)
Capire se la propria attività e’ pronta e adeguata per implementare l’Intelligenza Artificiale (AI) è un processo molto lungo e complesso, che non si verifica automaticamente. In questo corso dovrete imparare i fondamentali passaggi per far crescere l’attività e versare in soluzioni AI.

CORSO INTRODUTTIVO ALL’USO DELL’ARTIFICIAL INTELLIGENCE IN AZIENDA (2 DAY)
In questo corso si farà un'introduzione ai concetti principali dell'Intelligenza Artificiale (AI) e si vedranno casi di successo di aziende che hanno deciso di utilizzare l'AI per migliorare il proprio business.

COME USARE IL DEEP LEARNING E BIG DATA PER INCREMENTARE IL TUO BUSINESS (2 GIORNI)
In questo corso si affronteranno le tematiche sviluppate al Gig Data e al Deep Learning e come queste si uniscono per utilizzare le aziende a trarre valore dal proprio data.

Inviaci email

Nome:

Email:

Oggetto:

Workshop:

Select workshop:

Messaggio:

Si prega di risolvere la semplice equazione:

1 + 2 =

Inviare
New Features

- Deep Learning Development IDE
- Repository of Datasets
REFERENCES

REFERENCES

REFERENCES

REFERENCES

AKNOWLEDGEMENTS

THANK YOU FOR YOUR ATTENTION

Francesco Pugliese